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Abstract. In this work, we study the oscillatory character of a non-conformable differential equation of order

2α, under suitable conditions, which contains as a particular case the iconic Liénard Equation. The analysis is

carried out using Phase Plan tools, in this way, known results are extended in the entire and fractional Caputo

case, for non-conformable derivatives.

Keywords: Non conformable differential equation, oscillation.

AMS Subject Classification: 54AXX.
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1 Preliminaries

Fractional calculus concerns the generalization of differentiation and integration to non-integer
(fractional) orders. The subject has a long mathematical history being discussed for the first time
already in the correspondence of Leibniz with L’Hopital when this replied “What does dn

dxn f(x)
mean if n=1

2?” in September 30 of 1695. Over the centuries many mathematicians have built
up a large body of mathematical knowledge on fractional integrals and derivatives. Although
fractional calculus is a natural generalization of calculus, and although its mathematical history
is equally long, it has, until recently, played a negligible role in physics. One reason could
be that, until recently, the basic facts were not readily accessible even in the mathematical
literature (Podlybny, 1999). The nature of many systems makes that they can be more precisely
modeled using fractional differential equations. The differentiation and integration of arbitrary
orders have found applications in diverse fields of science and engineering like viscoelasticity,
electrochemistry, diffusion processes, control theory, heat conduction, electricity, mechanics,
chaos, and fractals (Kilbas et al., 2006; Lakshmikantham et al., 2009; Podlybny, 1999).

We know that the fractional derivative of a non-integer function can be conceived in two
branches: global (classical) and local. The former are often defined by means of integral trans-
forms, Fourier or Mellin, which means in particular that their nature is not local, has “memory”,
in the second case, if they are defined locally by a certain incremental quotients. The first are
associated with the emergence of the Fractional Calculation itself, with the pioneering works
of Euler, Laplace, Lacroix, Fourier, Abel, Liouville, ... until the establishment of the classical
definitions of Riemann-Liouville and Caputo. For various reasons, only very little were consid-
ered global derivatives, that is, defined in terms of an integral. We must point out that these
derivatives have a group of inconsistencies, the main ones are:

1) Most of the fractional derivatives except Caputo-type, do not satisfy Dα(1) = 0, if α is
not a natural number.
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2) All fractional derivatives do not satisfy the familiar Product Rule for two functions
Dα(fg) = gDα(f) + fDα(g).

3) All fractional derivatives do not satisfy the familiar Quotient Rule for two functions

Dα(fg ) =
gDα(f)−fDα(g)

g2
with g ̸= 0.

4) All fractional derivatives do not satisfy the Chain Rule for composite functions Dα(f ◦
g)(t) = Dα(f(g))Dαg(t).

5) The fractional derivatives do not have a corresponding “calculus”.
6) All fractional derivatives do not satisfy the Indices Rule DαDβ(f) = Dα+β(f).
7) It is known that in systems of differential equations of integer order, that satisfy the

conditions of existence and uniqueness, two different trajectories do not intercect each other in
finite time, however, fractional systems do not satisfy this property.

However, in Khalil et al. (2014) the authors define a new well-behaved simple fractional
derivative called the conformable fractional derivative, depending just on the basic limit defi-
nition of the derivative. Namely, for a function f : (0,+∞) → R the conformable fractional
derivative of order 0 < α ≤ 1 of f at t > 0 was defined by (see also Abdeljawad (2015))

Tαf(t) := lim
ε→0

f(t+ εt1−α)− f(t)

ε
.

If f is α-differentiable in some (0, a), a > 0, and lim
t→0+

f (α)(t) exists, then define f (α)(0) =

lim
t→0+

f (α)(t).

A little more recently, the authors defined a local derivative, called non conformable (see
Guzmán et al. (2018)), which we present below as Nα

1 f(t).

Definition 1. Given a function f : [0,+∞) → R. Then the N-derivative of f of order α is

defined by Nα
1 f(t) = lim

ε→0

f(t+εet
−α

)−f(t)
ε for all t > 0, α ∈ (0, 1). If f is α− differentiable in some

(0, a), and lim
t→0+

N
(α)
1 f(t) exists, then define N

(α)
1 f(0) = lim

t→0+
N

(α)
1 f(t).

Theorem 1. (see Guzmán et al. (2018)) Let f and g be N-differentiable at a point t > 0 and
α ∈ (0, 1]. Then

a) Nα
1 (af + bg)(t) = aNα

1 (f)(t) + bNα
1 (g)(t).

b) Nα
1 (t

p) = et
−α

ptp−1, p ∈ R.

c) Nα
1 (λ) = 0, λ ∈ R.

d) Nα
1 (fg)(t) = fNα

1 (g)(t) + gNα
1 (f)(t).

e) Nα
1 (

f
g )(t) =

gNα
1 (f)(t)−fNα

1 (g)(t)
g2(t)

.

f) If, in addition, f is differentiable then Nα
1 (f) = et

−α
f ′(t).

g) Being f differentiable and α = n integer, we have Nn
1 (f)(t) = et

−n
f ′(t).

Remark 1. The relations a), c), d) and (e) are similar to the classical results mathematical
analysis, these relationships are not established (or do not occur) for fractional derivatives of
global character (see Kilbas et al. (2006) and Podlybny (1999) and bibliography there). The
relation c) is maintained for the fractional derivative of Caputo. Cases c), f) and g) are typical
of this non conformable local fractional derivative.

Remark 2. The N-derivative solves almost all the insufficiencies that are indicated to the clas-
sical fractional derivatives. In particular we have the following result.
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P.M. GUZMÁN, J.E. NÁPOLES VALDÉS: A NOTE ON THE OSCILLATORY CHARACTER OF SOME...

Theorem 2. (Guzmán et al., 2018) Let α ∈ (0, 1], g N-differentiable at t > 0 and f differen-
tiable at g(t) then Nα

1 (f ◦ g)(t) = f ′(g(t))Nα
1 g(t).

This result is the equivalent, for Nα
1 , of the well-known chain rule of classic calculus and that

is basic in the Second Method of Lyapunov, for the study of stability of perturbed motion.

Definition 2. The non conformable fractional integral of order α is defined by the expression

NJα
t0f(t) =

∫ t
t0

f(s)

es−α ds.

The following statement is analogous to the one known from the Ordinary Calculus.

Theorem 3. Let f be N-differentiable function in (t0,∞) with α ∈ (0, 1]. Then for all t > t0
we have

a) If f is differentiable NJα
t0 (N

α
1 f(t)) = f(t)− f(t0).

b) Nα
1

(
NJα

t0f(t)
)
= f(t).

Following the same procedure of the ordinary calculus, we can proved the following result.

Theorem 4. (Nápoles et al., 2018) Let a > 0 and f : [a, b] → R be a given function that
satisfies:

i) f is continuous on [a, b],

ii) f is N-differentiable for some α ∈ (0, 1).

Then, we have that if Nα
1 f(t) ≥ 0 (≤ 0) then f is a non-decreasing (increasing) function.

2 Problem Statement

In this paper we will study the oscillatory character of the following non conformable differential
equation of order 2α

Nα
1 x =

1

h(x)
(A(y)− F (x)),

Nα
1 y = −h(x)g(x,Nα

1 x).
(1)

If h(x) ≡ 1, A(y) = y, F (x) =N1 Jα
0 f(s)(t), g(x,Nα

1 x) = g(x) then system (1) is
reduced to the non conformable Liénard equation

Nα
1 (N

α
1 x) + f(x)Nα

1 x+ g(x) = 0, (2)

studied in Guzmán et al. (2019) within the framework of the Caputo derivative.

Our central result is the following.

Theorem 5. Suppose that

1) i) xg(x,Nα
1 x) > 0, for all x ̸= 0;

ii) 0 < α ≤ h(x) ≤ β;

iii) A(y) is a continuous and strictly increasing in R with A(0) = 0 and A(±∞) = ±∞.

2) these exists a constant c > 0 and sequences {xn} , {x′n} such that

F (xn) ≥ −c, xn
n→+∞−−−−−→ +∞,

F (x′n) ≤ c, x′n
n→+∞−−−−−→ −∞;
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3) these exist sequences {zn} , {z′n} such that

F (zn) ≤ 0 with zn > 0, zn
n→+∞−−−−−→ 0,

F (z′n) ≥ 0 with zn < 0, z′n
n→+∞−−−−−→ 0,

then all solutions of (1) oscillate iff

lim sup
x→∞

[
F (x) +N1 J

α
0

g(s,N1s)

1 + F−(s)
(x)

]
= +∞, (3)

lim sup
x→∞

[
−F (x) +N1 J

α
0

g(s,N1s)

1 + F+(s)
(x)

]
= +∞, (4)

where F+(x) = {maxF (x), 0} and F−(x) = max{−F (x), 0}.

Proof. An analysis of the phase velocities of the system (1), allows us to distinguish the following
four regions in dependence on the signs of the N-derivatives of x and y.

Sufficiency.
Suppose that (3) and (4) hold and (x(t), y(t)) is a solution of (1) in (x(t0), y(t0)) = (x0, y0)
which does not oscillate. There are no problems if we assume x(t) > 0 for all t ≥ T ≥ t0 ≥ 0.
First, we show that if (3) holds then the solution (x(t), y(t)) of system (1) departing from the
point (x0, y0), with x0 ≥ 0, A(y0) > F (x0) at t = T , must intersect the curve A(y) = F (x) and
will be in the region R2 as t increasing.

For the take of obtaining a contradiction we assume that

A(y(t)) > F (x(t)), t > T. (5)

Then

Nα
1 x(t) =

A(y(t))− F (x(t))

h(x(t))
> 0,

Nα
1 y(t) = −h(x(t))g(x,Nα

1 x) < 0.

From this fact and the Theorem 4, x(t) is increasing and y(t) is decreasing with x(t) ≥ x0
and y(t) ≤ y0, for all t > T . Now consider the following two cases:
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I) limx→+∞ supF (x) = +∞, then exists a x1 > 0 such that F (x1) > A(y0). Since F (x(t)) <
A(y(t)) ≤ A(y0), it follows that x(T ) ≤ x(t) ≤ x1 for all t ≥ T . Choose L > 0, such that
Nα

1 y(t) = −h(x(t))g(x,Nα
1 x) ≤ −L for all T ≤ t ≤ +∞. This yields y(t) ≤ y0−L(t−t0) ≤

y0 − L(t − T )
t→+∞−−−−→ −∞ and A(y(t)) − F (x(t)) ≤ A(y(t)) + sup

x0≤h≤x1

(F (h))
t→+∞−−−−→ −∞

which contradicts (5).

II) If N1J
α
0

g(s)
1+F−(s)(x) = +∞, let limt→+∞ x(t) = k, 0 < k ≤ +∞ then k = +∞. Otherwise,

these will be a contradiction similar to I) by lefting x1 = k. If then follows that F (x(t)) <
A(y(t)) ≤ A(y0), t ≥ T and

y(t) = y0 −N1 J
α
t0 h(x(s))g(x(s), Nα

1 x(s))(t)

≤ y0 − α2
N1

Jα
t0

[
g(x(s))

A(y0) + F−(x(s))
Nα

1 x(s)

]
(t)

≤ y0 − α2
N1

Jα
x(t0)

[
g(u)

A(y0) + F−(u))

]
(x(t))

≤ y0 −
α2

(1 + |A(y0)|) N1J
α
x(t0)

[
g(u)

1 + F−(u))

]
(x(t))

t→+∞−−−−→ −∞.

Since x(t)
t→+∞−−−−→ +∞, there exists a sequence {tn} with tn → +∞ as n → +∞ such that

x(tn) = xn defined in 2). Thus

−c ≤ lim
n→+∞

F (xn) < lim
n→+∞

A(yn) = −∞

which is a contradiction. Taking into consideration the two previous cases, we have x =
x(t), y = y(t) are decreasing for all t > t0 in the region R2 then exists x2 ≥ 0 such that
limt→+∞ x(t) = x2, x2 ≤ x(t) ≤ x0 for all t ≥ t0. If limt→+∞ y(t) = −∞ then

Nα
1 x =

A(y(t))− F (x(t))

h(x(t))
≤ 1

β

[
A(y(t))− inf

x2≤u≤x0

F (u)

]
t→+∞−−−−→ −∞

which contradicts x2 ≤ x(t) ≤ x0. Now suppose that

lim
t→+∞

y(t) = y1 > −∞.

Integrate the second equation of (1)

Nα
1 y = −h(x(t))g(x,Nα

1 x)

we have
y(t) = y0 −N1

Jα
t0 h(x(s))g(x(s), Nα

1 x(s))(t).

Then limt→+∞ x(t) = 0 since x(t) is decreasing, zm < x0, zm is given in 3). Let x(tm) = zm in
some tm > t0.

A(y1) = lim
t→+∞

A(y(t)) ≤ A(y(tm))

≤ F (x(tm)) = F (zm) ≤ 0

hence t1 > t0 implies that A(y(t)) ≤ 1

2
A(y1) and |F (x(t))| ≤ 1

4 |A(b1)|. From here we have

Nα
1 x =

A(y(t))− F (x(t))

h(x)
≤ 1

β

[
1

2
A(b1) +A(b1)

]
=

1

4β
A(b1). (6)
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Integrating the above inequality we obtain the contradiction

x(t) ≤ x(t1) +
1

4β
A(b1)(t− t1)

t→+∞−−−−→ −∞

Therefore, these exist t2 > t1 > t0 such that x(t2) = 0 and y(t2) < 0, x(t3) = 0 and y(t3) > 0.
A similar argument allows us to obtain that if A(y0) < F (x0) and x0 < 0, there exists t2 > t0
such that x(t2) = 0 and y(t0) > 0 whenever (4) holds. We can conclude that if (3) and (4) hold
then all solutions of (1) oscilled and the proof of sufficiency is complete.

Necessity.
Suppose that (3) or (4) fail. For example (3). We assume that

lim
x→+∞

supF (x) < +∞

and

N1
Jα
0

g(x)

1 + F−(x)
(+∞) < +∞.

Let M > 0 such that F (x) ≤ M for all x ≥ 0. For any x0 > 0,

y0 = hβg(x0) + β2
N1

Jα
0

g(x)

1 + F−(x)
(+∞) +A−1(M + 1)

claim the A(y(t)) > M+1 for all t ≥ 0. Otherwise, there exists φ ≥ 0 such that A(y(φ)) = M+1
and A(y(s)) > M + 1 for all s ∈ [0, φ). It then follows that, for t ∈ [0, φ)

Nα
1 x =

A(y(t))− F (x(t))

h(x(t))
≥ M + 1− (M − F−(x))

h(x(t))

=
1 + F−(x)

h(x(t))

Thus x = x(t) is increasing on [0, φ). Consider now two cases

I) Suppose that φ 6 h, integrate the second equation of (1) Nα
1 y(t) = −h(x(t))g(x,Nα

1 x) we
have the contradiction

y(φ) = y0 −N1
Jα
0 a(x(s))g(x(s), N

α
1 x(s))(φ) ≥ y0 − hβg(x0) > A−1(M + 1)

II) φ > h, then

y(φ) = y0 −
∫ h

0
a(x(s))g(x(s), Nα

1 x(s))ds−
∫ φ

h
a(x(s))g(x(s), Nα

1 x(s))ds

≥ y0 − hβg(x0)− β2

∫ +∞

x0

g(x)

1 + F−(x)
dx

> A−1(M + 1)

is contradiction.

In view of I) and II) we get our affirmation. Hence, A(y(t)) > M + 1 and

Nα
1 =

A(y(t))− F (x(t))

h(x(t))
>

1

β
(M + 1− F (x)) >

1

β

for all t ≥ 0. Consequently we have x(t) > 1β(t− t0)x0 → +∞ as t → +∞. This implies that
(x(t), y(t)) does not oscilates and the proof of necessity is complete.
In this way the proof of the theorem is completed.
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P.M. GUZMÁN, J.E. NÁPOLES VALDÉS: A NOTE ON THE OSCILLATORY CHARACTER OF SOME...

3 Conclusions

In this work, we study the oscillatory character of a non-conformable equation of order 2α using
the analysis of the phase plane, in this way, we extend known results for ordinary second order
differential equations and fractional differential equations with the classical derivative of Caputo.
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Guzmán, P.M., Lugo Motta, L. and Nápoles V., J.E. (2019). A note on stability of certain
Lienard fractional equation. International Journal of Mathematics and Computer Science,
14 (2), 301-315.

Khalil, R., Al Horani, M., Yousef, A. and Sababheh, M. (2014). A new definition of fractional
derivative. Journal of Computational and Applied Mathematics, 264, 65-70.

Kilbas, A., Srivastava, M.H., Trujillo, J.J. (2006). Theory and Application on Fractional Differ-
ential Equations. Vol.204, North-Holland Mathematics Studies.

Lakshmikantham, V., Leela, S., Devi, J.V. (2009). Theory of Fractional Dynamic Systems.
Cambridge: Cambridge Scientific Publ.

Liénard, A. (1928). Étude des oscillations entretenues, Revue Génerale de l’Électricité, 23 (21),
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